Polynomial Approximations for Continuous Linear Programs
نویسندگان
چکیده
منابع مشابه
Polynomial Approximations for Continuous Linear Programs
Continuous linear programs have attracted considerable interest due to their potential for modelling manufacturing, scheduling and routing problems. While efficient simplex-type algorithms have been developed for separated continuous linear programs, crude time discretization remains the method of choice for solving general (non-separated) problem instances. In this paper we propose a more gene...
متن کاملCertifying Polynomial Time and Linear/Polynomial Space for Imperative Programs
In earlier work of Kristiansen and Niggl the polynomial-time computable functions were characterised by stack programs of μ-measure 0, and the linear-space computable functions by loop programs of μ-measure 0. Until recently, an open problem was how to extend these characterisations to programs with user-friendly basic instructions, such as assignment statements, and with mixed data structures....
متن کاملLinear Program Approximations for Factored Continuous-State Markov Decision Processes
Approximate linear programming (ALP) has emerged recently as one of the most promising methods for solving complex factored MDPs with finite state spaces. In this work we show that ALP solutions are not limited only to MDPs with finite state spaces, but that they can also be applied successfully to factored continuous-state MDPs (CMDPs). We show how one can build an ALP-based approximation for ...
متن کاملApproximations for Linear Tenth-order Boundary Value Problems through Polynomial and Non-polynomial Cubic Spline Techniques
Higher order differential equations have always been a tedious problem to solve for the mathematicians and engineers. Different numerical techniques were carried out to obtain numerical approximations to such problems. This research work presented and illustrated a novel numerical technique to approximate the tenth-order boundary value problems (BVPs). The techniques developed in this research ...
متن کاملOn Polynomial Kernels for Sparse Integer Linear Programs
Integer linear programs (ILPs) are a widely applied framework for dealing with combinatorial problems that arise in practice. It is known, e.g., by the success of CPLEX, that preprocessing and simplification can greatly speed up the process of optimizing an ILP. The present work seeks to further the theoretical understanding of preprocessing for ILPs by initiating a rigorous study within the fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2012
ISSN: 1052-6234,1095-7189
DOI: 10.1137/110822992